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Abstract-This paper examines the normal and tangential indentation problems for two circular
punches on the surface of an elastic layer. By using the method proposed for studying offset parallel
penny-shaped cracks in an elastic solid, we show that these problems are governed by systems of
Fredholm integral equations, which for some special cases, can be solved by iteration. For certain
prescribed indentations, asymptotic solutions are presented to illustrate the manner in which the
presence of the second punch and thickness of the layer influences the total forces induced on the
punches. Copyright ~ 1996 Elsevier Science Ltd.

I. INTRODUCTION

Normal indentation of a half-space region by two circular punches has been considered by
Collins (1963). In this study the problem is reduced to a system of Fredholm integral
equations of the second kind, which are then solved iteratively for the case when the punches
are far apart. By using Galin's expression for pressure under the punch caused by a
concentrated normal load at another point of the half-space, Gladwell and Fabrikant (1982)
derive simple approximate relationships among the forces, moments, and indentations for
a system of circular punches on a half-space. These results are then extended by Fabrikant
(1986) to include elliptic punches. A related problem, in which tangential displacements
instead of normal displacements are prescribed in the contact regions, is first investigated
by Fabrikant (1989). By using the mean value theorem, he relates the resulting tangential
forces acting on each domain to the given displacements through a system of linear algebraic
equations.

This paper deals with interaction of two circular indentors on an elastic layer. Both
the normal indentation and a "relaxed" tangential indentation problems are examined. It
is shown that these problems are governed by systems of Fredholm integral equations of
the second kind, which can be solved approximately by iteration for the case where the
radii of the contact areas are small when compared with the distance between them and
thickness of the layer.

The basic methodology of the present analysis, which follows from the procedures
given by Graham and Lan (1994) for studying offset cracks, is outlined in Section 2.
Derivation of the governing integral equations for the normal indentation problem and
complete details of their solutions are also presented in this section. The tangential inden­
tation problem is solved in a very similar fashion with the aid of the method given by
Westmann (1965) for solving simultaneous pairs of integral equations. For the sake of
brevity, only some of the important formulae and results are presented in Section 3.
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Fig. I. Normal indentation of an elastic layer by two rigid circular smooth indentors.

2. NORMAL INDENTATION PROBLEM

The normal indentation problem can be described as follows: an elastic layer rests on
a frictionless rigid foundation and the layer is indented by two lubricated circular rigid
punches P and P of radii a and tl respectively. We evaluate the forces Pz and Pz required to
maintain a prescribed set of displacements of the punches.

Consider two similarly oriented local cylindrical co-ordinate systems (r, 8, z) and
(r, e, z) such that the surface contact areas occupy

P: r < a, 0 ~ 8 ~ 2n, z = 0; and P: r < tl, 0 ~ e~ 2n, z = 0, (l)

respectively, and the elastic layer has a finite thickness h such that 0 ~ z ~ h. The two
coordinate systems are arranged in such a way that the origin (J of the second coordinate
system is a point (f, 0, 0) in terms of the first set of coordinates, and 0 is a point (f, n, 0) in
terms of the second set. Here/is the distance between the centers of the two circular contact
areas (Fig. I). In this section we assume that displacement field of the elastic layer takes
the following form*

00

ur(r, 8, z) = L u~(r, z) cos(n8);
n=O

00

ue(r, 8, z) = L uo(r, z) sin(n8) ;
n=l

'x

uz (r,8,z) = L u~(r,z)cos(n8),
n=O

(2)

where u~(r, z), uo(r, z) and u~(r, z) are Fourier coefficients of the displacement vector. For
such a displacement field, stresses can also be expanded as Fourier series. Let
!~z(r, z), !oz(r, z) and (J~(r, z) be the corresponding Fourier coefficients of the stresses of
interest. In terms of these Fourier coefficients, boundary conditions for the normal inden­
tation problem can be written as follows

!~z(r, 0) = !oz(r, 0) = 0, for r ~ 0; (J~(r, 0) = 0, for r > a or r> tl;

u~(r,O) =f,,(r) for r ~ a; and u~(r,O) =];.(1') for r ~ ii

on the indentation surface z = 0 and

u~(r, h) = !~z(r, h) = !oz(r, h) = 0

(3)

(4)

at the base of the layer z = h. The boundary conditions imply a frictionless bilateral contact
with no separation at the interface z = h. Here f,,(r) and ];.(r) are prescribed functions
determined by the indentations and the profiles of the punches.

* If the dependence on e(even or odd) of the loadings is changed, all the formulae remain valid except for
some minor changes.
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2.1 Derivation of the integral equations
In order to solve the two punch normal indentation problem, we first examine a more

convenient layer problem. Consider the problem of an elastic layer (0 :::; z :::; h) which rests
on a frictionless rigid foundation at a depth z = h with prescribed normal stress applied at
the upper surface z = O. In terms of the cylindrical coordinates (r, e, z), the boundary
conditions of this layer problem can be written as

rr;:(r,O) = Pn(r), for r ~ 0; r;z(r,O) = raz(r, 0) = 0, for r ~ 0 (5)

on the upper surface z = 0, where Pn(r) is the Fourier cosine coefficients of the given normal
traction. At the base of the layer, boundary conditions (4) are imposed.

Solution for this layer problem can be obtained by using either the method proposed
by Keer (1964) or by employing the general formulation given by Muki (1961) for the
three-dimensional asymmetric problem. In deriving the integral equations for the two
punch normal indentation problem, we only require the relationship between the normal
displacement on the top surface and the given normal stress. In terms of the co-ordinates
(r, e, z), this relation takes the form

(l-V)fCD

u;(r,O) = - -- An(s)[l - K) (2sh)]Jn (rs) ds
J1 0

(6)

where v, J1 are Poisson's ratio and shear modulus of the elastic layer respectively, In(rs) is
the Bessel function of the first kind of order n, An(s) is the nth order Hankel transform of
the given normal stress Fourier coefficients Pn(r), and the function K] (x) is given by

I +x-e-x

K,(x) =---­
x+sinh (x)

(7)

Displacement-traction relation (6) provides a method for deriving the integral equations
for the single punch normal indentation problem. From the definition of a Hankel inverse
transform (Sneddon, 1972), pAr) can be written as a Hankel transform of An(s)

By virtue of the identity

(8)

for :t>f3> -1, (9)

it can be shown that the normal stress boundary condition on z = 0, for the single punch
normal indentation problem, which requires that pressure outside the contact region P be
zero, is satisfied by choosing An(s) to be of the form

(10)

Here rex) is the Gamma function, H(x) is the Heaviside step function and Xn(t) is a function
to be determined on [0, a]. Considering that u;(r, 0) is given when r :::; a, the substitution of
eqn (10) into (6) with a change in the order of integration leads an integral equation for
Xn(t). Reference to the normal indentation of an elastic layer by a single punch can be
found in the work by Keer (1964).
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It is evident that the equivalent solutions, in terms of coordinates (r, 8, z) to the normal
indentation problem involving single punch P can be obtained by eqns (6) and (10) with r,
uz, An and Xn replaced by r, Un An and Xn-

Now consider the two punch normal indentation problem. It is clear that a super­
position of the solutions for two single punch (either P or p) normal indentation problems
satisfies all the boundary conditions except the displacement conditions on the top surface
z = O. It will be shown that these conditions result a system of coupled Fredholm integral
equations for X,,{t) and Xn(t). In deriving these integral equations, expressions of the type
(6) and its analogue for punch P in both local co-ordinates are required. This task can be
accomplished by using the same technique proposed in Graham and Lan (1994). In terms
of the second system of local co-ordinates (r, 8, z), the equivalent to the relation (6) can be
rewritten as

with

and

(I-V)f""
u~(r, 0) = - -- A:(s)[I-K1(2sh)]Jn (fs) ds,

f..l 0

'l)

A:(s) = (- 1)" If Arn(s)T~n(fs)
m=O

(11)

(12)

(13)

Here the prime on the summation sign implies that the (-I)"Jrn - n(fs) terms do not appear
when n = O. In terms of the first local co-ordinate system, expression of the displacement­
traction relation for the problem involving the second punch P takes the form

with

(I-v) fW -
u~(r, 0) = - -- A:(s)[I-K1(2sh)]Jn(rs) ds,

f..l 0

A:(s) = r(_l)rnAntCs) Tf~,,(fS).
m=O

(14)

(15)

Equations (11) and (14) are results of special importance. Superposing the above two
normal displacement fields in the two local coordinate systems respectively and substituting
them into the normal displacement boundary conditions (3), results in the following system
of coupled Fredholm integral equations for X,,(y) and Xn(y) ; i.e.

Here the expression on the right hand sides of the integral eqn (16) is given by

I AI d fY X"+lf, (x) dxF (y) = _ _ _ _-'------n---'-----_

" 2(1-v) ny" dy 0 Jy2- x 2
(18)

and the expression for F,,(y) is identical to (18) except thatj~(x) is replaced by];,(x). Kb,,(t, y)
are the kernel functions related to the boundary and Kpnrn(r, x) are the kernels reflecting the
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effects of the second punch (see the Appendix). For special cases, these integral equations
can be solved by iteration. Once Xn(t) and Xn(t) are known, pressures in the contact regions
can be obtained by using eqn (8) and its analogue for P. For example, pressure per, 8)
under punch P takes the following form

(19)

The total force Pz in the z direction exerted by punch P can be obtained by integrating the
pressure over the contact area P

r2n ra ra

Pz = - Jo Jo per, 8)r dr d8 = 4,u~ Jo X o(t) dt,

and the resultant moment My in y direction can also be found from the result

r2n ra ra

My = Jo Jo per, 8)r
2

cos(8) drd8 = -4,u~ Jo tX l (t) dt.

(20)

(21)

2.2. Some asymptotic solutions
First we consider the single punch normal indentation problem, which has been studied

by Keer (1964) using Copson's method for solving dual integral equations. From the
kernels given in the Appendix, it is seen that due to the absence of the second punch,
Kpnm(t,y) reduces to zero and integral eqns (16) and (17) reduce to a system of integral
equations for Xn(t),

(22)

This recovers the result given by Keer (1964), noting that the definitions of the unknown
functions are slightly different.

If the radius of the punch is small compared with the height of the layer, integral eqn
(22) can be solved by iteration to obtain a solution perturbing the result for the problem
of the normal indentation of a half-space. Note that kernels Kn(x, y) can be expanded as
power series in terms of a small non-dimensional parameter eh = a/h. Consequently the
solutions for Xn(t) can also be obtained in a similar form. For a slightly inclined punch
with following displacement prescribed in contact area

(23)

The eqn (22) can be solved by iteration; the solutions accurate to order G(eh) are

(24)

(25)

where L? and Lf (given in the Appendix) are certain definite integrals involving function
K] (x). These integrals can be evaluated by numerical integration with sufficient accuracy
using the Gauss-Laguerre quadrature formula. The resultant force and moment then follow
from eqns (20) and (21)
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Fig. 2. Numerical and asymptotic solutions for the single punch normal indentation problem.

4aJi60 2 3}
Pz = - -(--) {1 +O.74333h +O.55253h+O.0753h ,

I-v
(26)

(27)

The above results show that Pz is only dependent on!o(x), the first Fourier coefficient of
the given displacement, and My is fully determined by the second Fourier coefficient!] (x).
These formulae, by definition, are valid to 0(3t). For moderate values of 3h, eqn (22) can
be solved directly by a numerical procedure. From Fig. 2 it is evident that the asymptotic
solution gives a very good approximation to the normal indentation of the layer by a single
punch if h/a ~ 1. In this figure Pzo = -4aJ.l6o/(1-v) is the force that should be applied to
a single punch on an elastic half-space, required to maintain a normal indentation 60 ,

As the second example, we consider the problem of two identical punches penetrating
the elastic layer to equal depths 60 ; i.e.fo(x) = 10 (x) = 60 and .fn(x) = ];,(x) = 0 for n ~ 1.
From the symmetry of this problem, it is seen that Xn(t) = ( -I)"Xn(t), and therefore the
system of dual integral eqns (16) and (17) can again be reduced to a system of integral
equations for Xn(t),

If the punch radius a is small compared with either the thickness of the layer h or the
distance! between the centers of the two punches, the above integral equation can be
solved by iteration to obtain solutions in terms of double power series of 3h and 3j( = a/f),
which are power series in 3f with coefficients being power series of 3h' From the definitions
of kernels given in the Appendix, it is seen that Kbn(t,y) can be expanded as power series in
3h of order (2n + I) and Kpnm(t, y) can be expanded as power series in 3f of order (m +n+ I).
If we seek solutions accurate to order 0(3;) +0(3}), all the equations corresponding to the
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terms n ~ 2 and m ~ 2 can be ignored and we only need to consider the first two integral
equations for Xo(t) and XI (t). The solutions are

(29)

4y I 15 0 [ 2 0 (2 0)2 2J 2X)(y)=-(J 1)-I) h: 1+-L I + -L) eh ef,
na (1- v)y 2n n n

(30)

where J':nl (see Appendix) are certain definite integrals involving the function K 1(x) and
the spacing ratio hi! The resultant force and moment applied on the first punch can then
be obtained from (20) and (21) as follows:

(31)

(32)

In the special case when eh approaches zero, the result (31) reduces to that given by Collins
(1963). Equation (32) shows that when the circular punches interact an extra moment My
of order G(e}) is required to maintain the uniform indentation 150 , Generally My is relatively
small (of order G(e})), and therefore only the dependence of Pz on hi/is shown graphically
in Fig. 3.
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Fig. 3. Normal indentation: variation of the nondimensional resultant force P, with respect to hi!
for various 8/,
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Finally we use eqns (16) and (17) to examine the interaction between the rigid punch
P and an externally located concentrated normal force Pz • In this case, radius of the second
punch ii --+ °in such a way that 4jt~S~ Xo(t) dt = Pz • We evaluate the force resultant
and the moment required to maintain zero normal displacement under the punch P. For
this limiting case, integral eqns (16) and (17) decouple. Xn(t), n = 0, 1,2 ... can be obtained
by solving (16), which now takes the following form

(33)

As with the last two examples this equation can be solved by iteration. The first two terms
of the power series solutions for quantities of interest are as follows

(34)

(35)

where I':" are integrals involving function K(x) and a parameter f/h (see Appendix). Then
the force and moment required to maintain the zero normal displacement follow from (20)
and (21)

(36)

(37)

These results reduce to those given by Selvadurai (1980) when th --+ O. It is evident that the
above two expressions can be used to study interaction between the rigid punch P and an
externally located concentrated moment M by applying two forces Pz and - Pz at (f, 0, 0)
and (f+ /5, 0, 0) respectively and letting /5 --+ °in such a way that Pz/5 = M. Furthermore it
is worth mentioning that these two results can also be obtained by using Betti's reciprocal
theorem (Selvadurai, 1981).

3. TANGENTIAL INDENTATION PROBLEM

For the tangential indentation problem, the layer 0 :( z :( h is bonded with the rigid
base at z = h and the punches P and P on the layer are flexible so that there is no normal
stress induced on the indentation surface z = 0 (see Figs 4 and 5).

Fig. 4. Tangential indentation of a layer by two flexible circular indentors.



Two-punch problems for an elastic layer 2767

Fig. 5. Tangential indentation: upper surface of the elastic layer.

We assume that the tangential displacements are prescribed in the contact areas and
can be expanded as Fourier series. Again our task is to relate the resultant shear forces
required to maintain the given indentations.

In terms of the two co-ordinate systems introduced before, the boundary conditions
of the tangential indentation problem can be written as

u;(r, 0) + u~(r, 0) = gn(r), u;(r, 0) - u~(r, 0) = hn(r), for r ~ a,

u;(F, 0) +ui)(F, 0) = {jn(i'), u;(F, 0) - uiJ(F, 0) = hn(i'), for F~ a (38)

and

r;z(r,O) = roz(r, 0) = 0, for r> a or f> a and (J";(r,O) = 0, for r ~ 0,

(39)

on the indentation surface z = 0, and in terms of co-ordinates (r, (), z)

u;(r,h) = uo(r,h) = u;(r,h) = 0, (40)

at the base of the layer z = h. It may be noted that the displacements in the z-direction
within the punch regions are unspecified. If the contact is fuJJy bonded then the normal
displacements within the punch region could be of the b1x-type indicated in (23). In this
problem however, this displacement is left unspecified.

3.1. Derivation of the integral equations
As with the normal indentation problem, we first consider a layer problem, where an

elastic layer 0 ~ z ~ h is subject to shear stresses at the upper surface z = 0, and the
base of the layer z = h is constrained from movement. In order to examine rotational
displacements, we interchange the dependence in ()(even or odd) in (2). Again in the
derivation of integral equations, we only require the relationships between the tangential
displacements at the surface and and the associated applied shear forces. These relations
can be obtained by using the results given by Muki (1961), i.e:

(41)

u;(r, 0) - uo(r, 0) = 2f' {-(1- v)[1 +K 2 (2sh)]Bn(s) - [I +K 3 (2sh)]Cn(s) }In+ 1 (rs) ds,

(42)

for any n ~ 0, where functions K 2 (x) and K 3(x) are given by
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-6+8v- [(3-4v)2 + (I-x)2]ex
~W= ,

3 -4v+ [(3 -4vr + 1+x2]ex+ (3 _4v)e2x

2
K 3 (x) = ---

I +ex

(43)

(44)

and functions Bn(s), C(s) are determined by Hankel transforms of the Fourier coefficients
of the prescribed shear stresses rgz(r, 0) and r;z(r, 0) in the following way

(45)

(46)

As with the normal indentation problem, eqns (41)-(42) and (45)-(46) provide a means
for deriving the integral equations governing the single punch tangential indentation prob­
lem. With the aid of the method proposed by Westmann (1965) for solving simultaneous
pairs of integral equations, we can show that the stress boundary conditions on the inden­
tation surface (which require that the shear stresses outside the contact region P be zero)
are satisfied by choosing

Bo(s) = 0, (47)

(48)

(49)

(50)

The tangential displacement boundary conditions on the indentation surface give rise to a
pair of integral equations for Yn(t) and Zn(t).

We now consider the two punch tangential indentation problem. Solutions to the
problem can be considered as a superposition of solutions to two tangential indentation
problems, each involving one punch (either P or P). This superposition satisfies all the
boundary conditions except the tangential displacement conditions (38) in the contact
regions. By using the same procedure as for the normal indentation problem, it can be
shown that these two conditions result in a system of four Fredholm integral equations for
Yn(t), Zn(t) and Yn(t), Zn(t). Here Yn(t), Zn(t) are the analogues of Yit), Zit) for the
second punch P. For the punch P, the system of integral equations is

i

il- I d iYX2ho(X)dX+ Zo(t)Kpoon(t,y) dt = - M": ~d. ~,(51)
o V~}} ovY-~
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(52)

Yn(y) + fa" Yn(t)Kbnll(t,y)dt+ fa" Zn(t)Kbn1Z(t,y)dt

+ m~l(-l)m{f Yn(t)Kpnmll(t,y)dt+f Zn(t)Kpnmlz(t,Y)dt}

+f Zo (t)Kpn01 z(t,y) dt = Gn(y), (53)

if n ;;:: 1. Here the quantities on right-hand side are

y-n+ IdlY x"gn(X) dx
Gn(y) = - ,

(2-v)~ dy 0 JyZ _xz
(55)

(56)

and kernels of the integral equations are listed in the Appendix. Corresponding integral
equations for the punch P take a similar form. In some instances, it is helpful to write the
second term on the right hand side of eqn (56) in the alternative form, i.e.

Integral eqns (51)-(54) and their analogues for punch P can be solved when a is small
compared with both hand f Once Yn(t), Zn(t) are known, the total resultant force P" Py

and moment M z can be obtained. Equations (45) and (46) enable us to find the stress
distribution under punch P,

n (0) n ( ) 4A n-Z d fa Yn(t) dt 2/lV A-n d Zn fa Zn(t) dt,ozr, +,rzr,O = -/lr - --- -r -r ,
7[ dr r tn-z~ I-v 7[ dr r tn~

(57)
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lIe 0)- n(.0)=2,u(2-V)~2r'1~fa ZII(t)dt<: Hz r, <:rz I, .
1- V n dr r tilJ t2 - r2

(58)

Proper integrations over the region P give the resultant forces and moment

r2n ra

Px = Jo de Jo rdrTzxCr,e,O) = 0,

f
2n fa fa 2 d[fa Zo(t) dtJM z = de rdr[rToz(r, e, 0)] = 4,u~ r d JiC? dr.

o a orr t 2
- r-

(59)

(60)

(61)

Equation (59) shows that the total force in the x-direction vanishes, even though
Tyz(r, e, 0) # 0 in the contact area. Note that (59) and (60) hold only for the case in which
uo(r, e, z) is an even function of e, ur(r, e, z) and uz(r, e, z) are odd functions of e. For the
case where the e dependence is given by (2), P, is always zero as shown in the next
subsection. In any case, force and moments in other directions, i.e. Pz, M x and My are all
zero due to the relaxation boundary condition (j~(r, 0) = 0, for r ): O. However, to satisfy
the relaxation condition, u~(r, 0) is generally non-zero and punches have to be flexible to
allow such non-uniform normal displacement. Expression for u~(r, 0) in a special case is
given in the next subsection.

3.2. Some asymptotic solutions
In this subsection integral eqns (51)-(54) are solved for some special cases.
First we consider the case where two identical circular punches of radius a and center

to center spacingfwhich are subjected to equal rotational displacements (in the same or
opposite direction). The boundary conditions can be expressed as

uZ(t,z) = ±a~(t,z) = (jot, and u7J(t,z) = a~(t,z) = 0, forn # O. (62)

Here the upper signs correspond to rotations in the same sense and the lower signs cor­
respond to rotations in the opposite sense. It is seen, from the symmetry of this problem,
that Yn(t), Zn(t) and fit), Zn(t) satisfy the following

(63)

Therefore the system of four integral equations, two for each indentor, can be reduced to
a system of two integral equations for Yn(t) and Zn(t). When a (= a) is small compared
with hand 1, these equations can be solved iteratively to give solutions in terms of eh and
e/. Solutions accurate to order O(eh) +O(e}) are

(64)

(65)

where J':/; (given in the Appendix) are definite integrals with parameter hi! Substituting
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Fig. 6. Tangential indentation: variation of the nondimensional resultant moment M, with respect
to h/.ffor various Erin the case where two punches undergo equal rotational displacements (in same

direction) .

these solutions into eqns (61) and (60) gives us the following moment and force required
to maintain the displacement (62)

(66)

(67)

The last equation indicates that an extra y-direction force of order 0(81) is needed to
maintain the pure rotational displacement. The variations in the nondimensional M z are
shown in Fig. 6. These results are for Poisson's ratio v = 0.3.

As the second example, we consider two identical punches which undergo equal
displacements Uv = ±uy = 60 in the y-direction. We find again from the symmetry of
this problem that solutions of the integral equations satisfy Yn(t) = ±(_1)n+ I fn(t) and
Zn(t) = ±(- 1)"+ I Zit). The first few leading terms of the solutions produce the following
resultant force and moment

(68)

(69)

Finally we consider the case where the layer is subjected to displacements Ux = ±a, = 60

inside the contact areas P and P. In this case, the edependence of the displacements changes
back to (2) and therefore Zo(s) = Zo(s) = 0 prevail instead of Yo(s) = foes) = O. Integral
eqns (51)-(54) only require some minor changes and the solutions are as follows



2772 Q. Lan et al.

1.65

1.55

.I.:.z..- 1.45
Pxo

1.35

1.25

Ef = 0.35

0.3

0.25

1 2 3 4 5
h
f

Fig. 7. Tangential indentation: variation of the nondimensional resultant force p. with respect to
hi/for various Brin the case where two punches undergo same x-direction displacements.

and the resultant force in the y-direction, PY' is always zero though 'zy =I- 0 inside the contact
area P. Equations (68) and (70) agree with those given in Fabrikant (1989) to the order of
O(e}) when eh reduces to zero. The behavior of the P, and Py for nonzero eh are shown in
Figs 7 and 8. Again, these results are applicable for the case v = 0.3. As mentioned before
the normal displacements under the punches are generally non-zero. If a half-space is

1.6 r----....-I---~I---..,.I-----.I---~I.-----

1.5 I-

1.4 I-

1.3 I-

1.2 I-

1.1 I-

-

-

L --.::J.ff-==:....:0:.:;.3;..5-----~-
0.3
0.25

o
I

1 2 h 3
f

4

I

5

Fig. 8. Tangential indentation: variation of the nondimensional resultant force P, with respect to
hi/for various Brin the case where two punches undergo same y-direction displacements.
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subjected to a displacement (5 in the x-direction in the contact region P, then the absence
of the normal stress in the contact surface results in a normal displacement. Under this
flexible punch this displacement is as follows

2(1-2v)(5 rsin(e)
uz(r, e, 0) = (

2-v)n (a+Ja2-r2)

This result is in keeping with the assertion which follows (40).

(71)

4. CONCLUSIONS

The paper demonstrates the basic formulations which govern the combined indentation
of a layer underlain by a rigid base, by two circular punches. In the case of either the
smooth axial indentation or the relaxed in-plane (tangential) indentation the formulation
results in systems ofFredholm integral equations. The paper develops numerical procedures
which can be used to find approximate solutions to problems of engineering interest. In
particular the approximate results developed via asymptotic method are compared with
available limiting results for punches located on half-space regions. The methodology can be
extended quite conveniently to include other types ofindentations and transverse isotropy of
the elastic layer. These extensions will be considered in future work.
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APPENDIX

Kernels of integral eqns (16) and (17) are

Kernels of integral eqns (51)-(54) are
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where

and

Q. Lan et al.

KpOO22 (t,y) = vIYt (X [I +K,(2sh)]h2(st)J11,(ys)Jo(fs)sds,
Jo

KpOm21 (t,y) = -vIYtrh,(ys)Jm_3I, (st)Jm(.fs)[1 +K,(2sh)]sds,

vlYti
f

K"", I (t, y) = -2- . [(1-Y)K, (2sh) + K, (2sh)]J" .. 'j2 (st)J" ··31' (yS)S ds,
~V 0

r-
Iyt (~

K""12(t,y) = ~-.:.y Jo [K,(2sh)-K,(2sh)]J"+'j,(st)J"_3I,(ys)sds,

(VI r"
K""21 (t,y) = T Jo· [(l-Y)K,(2sh)-K3(2sh)]J"_3I,(st)J,,+ ,/,(ys)sds,

I vt r~
K""n(t,y) = T Jo [K,(2sh)+K,(2sh)]J"+'I,(st)J"+'/2(ys)sds,

2 !Yri x

Kp,,(ll2(t,y) = - -2'\1 . [(\ +K,(2sh)]J(j2(St)J"_3I'(ys)J"(fs)s ds,
-v 0

R,(s) = - T;m(fs) [I +K2(2sh)], R 3(s) = T;""(fs) [1 +K,(2sh)],

The following are some definite integrals involved in the asymptotic solutions

I~, = rK«(2X)Jm(t X)X"dX,

L;' = rK;(2x)x" dx,

i = 1,2, 3 and m, n are integers.

Here L;' are constants when i = I, 3 and are functions of Y when i = 2. For a given value of Y, say Y = 0.3, all L;'
can be evaluated numerically using the Gauss-Laguerre formula with sufficient accuracy. I: are functions of!lh
and J:, are functions of hi!only when i = 1, 3 and functions of hi!and Y when i = 2. For given hj!and Y, all I:
and J:, can also be evaluated with sufficient accuracy using the shifted Gauss-Laguerre formula.


